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DISSOCIATED LAMINAR BOUNDARY-LAYER FLOW 

OVER A FLAT-PLATE SURFACE WITH ARBITRARILY 

DISTRIBUTED CATALYCITY * 
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(Received 5 June 1965 and in revisedform 28 July 1966) 

Ah&act-Meksyn’s method [I] of solution of laminar boundary layers is extended to deal with a 
typical problem of a binary boundary layer with nonsimilar solution. The present paper deals with the 
asymptotic method of solution of the frozen dissociated laminar boundary-layer flow over a flat-plate 
surface with arbitrarily distributed catalycity. A closed form solution is obtained and has been compared 
with existing data due to other investigators [2-S]. Results of the comparison show that the present results 
are of adequate accuracy. The attractiveness of the present method is in the simplicity of the analysis. 

NOMENCLATURE 

coefficients defined by equation (21); 
coefficients defined by equation (12) ; 
constant in equation (39) ; 
coefficients defined by equation (21a); 
Blasius function ; 
molecular mass function ; 
coefficients defined by equation (16) ; 
Schmidt number (= p/pDi 2); 
velocities in x- and y-direction ; 
boundary-layer coordinates ; 
surface atom mass function. 

Greek symbols 

B, defined by equation (43) ; 

Y, defined by equation (42) ; 

E, dummy variable in equation (29) ; 

71, defined by equation (29) ; 

T, variable defined by equation (10) ; 
5, q, transformed coordinates ; 

P. density ; 

* This work was sponsored by the Office of Aerospace 
Research, Aerospace Research Laboratories, under Con- 
tract AF 33(616)8453, while both authors were at The 
University of Cincinnati, Cincinnati, Ohio. 

t Ohio State University, Columbus, Ohio. 
$ Boeing Aircraft Company, Seattle, Washington. 

viscosity ; 
exponent in catalycity variation fun- 
tion ; 
density viscosity ratio (= pp/p,pJ ; 
Dahmkohler number ; 
function defined by equation (11) ; 
variable defined by equation (21a); 
defined by equation (45) ; 
defined by equation (46). 

Subscripts 

1, refers to molecular species ; 

2, refers to atomic species ; 
evaluated in free-stream conditions ; 
evaluated for q = y = 0, i.e. at the 
surface. 

INTRODUCTION 

THE ASYMPTOTIC method of solution of laminar 
boundary layers, first used by Meksyn [l], has 
been applied to the study of the boundary-layer 
diffusion equation in the presence of a body 
surface with first order atom recombination rate 
distributed in an arbitrary continuous manner. 
In the present paper, we deal with the case of a 
frozen dissociated laminar boundary-layer flow 
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over a flat-plate surface with arbitrarily distri- 
buted catalycity, constancy of viscosity-density 
product being assumed. When the nondimen- 
sional Dahmkohler number varies as a single 
power of the distance [see equation (39)], we 
obtain the surface atomic mass fraction on the 
flat plate in a closed form solution [see equation 
(51)]. Our approximate results are compared 
with the “exact” solution by Inger [2] and 
Chambr&Acrivos [3] ; the solution by integral 
method by Chung-Anderson [4] ; and the solu- 
tion by Lighthill’s technique due to Chung- 
Liu-Mirels [5]*. It will be seen that the asympto- 
tic method of solution presented herein provides 
adequate accuracy. The attractiveness of the 
present method is mainly in the simplicity of the 
approach. Previously, the present authors have 
extended Meksyn’s method to obtain some 
similar solutions of binary boundary layers [6] 
in connection with the transpiration cooling 
problem, and had reasonably encouraging re- 
sults. The present study suggests that the 
extended Meksyn’s method for the treatment of 
nonsimilar solutions of the binary boundary- 
layer equations deserves further attention. A 
general formulation of this latter problem will be 
presented elsewhere. 

ANALYSIS 

Consider the laminar boundary-layer flow of 
a dissociated binary gas mixture over a flat plate. 
Let there be an arbitrarily prescribed surface 
catalycity. We assume that the mixture of 
molecules and atoms is chemically frozen in the 
boundary layer. We further assume that the 
function representing the velocity profile is self- 
similar and independent of the energy and 
diffusion equations. In other words, the velocity 
profile is expressible as follows : 

f =fbl) 
e 

* Some of these results were compared with the results 
obtained by the method of Mellin transform by Simpkins 
and Freeman [7, 81. 

where q is the similarity variable defined as 
follows : 

Y 

v=$& ;dy 

1 

(2) 

and < is defined as 

(3) 

The differential equation for f is 

(Af “)’ + ff” = 0 (4) 

with the boundary conditions : 

f(0) = f’(0) = 0 f’(a) = 1. (5) 

In equation (4) X= pp/p,p,. We shall take 
2 = 1, and f is then the Blasius function. In 
order to determine the surface atom recombi- 
nation rate resulting from the prescribed surface 
catalycity, we must consider the nonsimilar 
solution of the diffusion equation : 

aK1 
K;’ + SfK; = 2tf’Sz (6) 

The boundary conditions are : 

K,(co, 0 = 0 (7) 

%(O, 5) = - (~(5) [I - K,(O, 01. (8) 

In these equations K,(& t,~) denotes the mass 
fraction of the molecular species. Equation (8) 
is the relation between the diffusion of species 
at the surface and the surface recombination 
rate. (p(5) is termed the Dahmkoler number and 
represents the ratio of atom diffusion time to 
surface recombination time. It is a prescribed 
function of t. The present objective is to deter- 
mine K,(O, 5). 

Integrating equation (6), we have 

where 

t=Sgfdq 
0 

(10) 
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4(&q) = %(O,() + ez2S/‘S!$dq. (11) 

I 

written in the form : 

S has been taken to be constant. The velocity 
2” = (Sq)n ,zO sI”‘$ 

profile is expressible as where 

m 

f= 
c. 

n$'I' (12) 
go = f: sy$_-,". U3b) 

m=O 

n=O Consequently each coefficient may be ex- 

where a, = a, = a3 = a4 = 0 and a,, are in- pressed in terms of .“lower order” coefficients, 
dependent of 5. From equation (lo), we have and eventually in terms of Si”) and Sb” which 

CO are the basic coefficients in the series r. Thus, 

c 

we may write: 
r=s (13) 

n=O 

(z)O = (S?/)O f, slp’rf = 1 
t 

1 n=O 
s(O) = 
n 0 n#O 

(4’ = (W “EO SW $1) = afl 
” 

(n + l)!’ 

(rY = (W2 “go s:2’V” Sy’ = i st)$i)_ 
m=O 

For further work it will be necessary to Then, we have 
expand the function z” as a series of the variable 

?. 
Consider eT=%$(ry=rW&n (14) 

rn = (SqY{E &qk}“. (13a) 

?I=0 

where, utilizing the result (13b), n “=O 

k=O 

If we now define Sj”) to be the coefficient of $ w, = 
c 

(S)P s$??, +. (15) 
in the expansion of the function p=o 

{2(x 5) !VkYT 
From equation (15), we obtain 

k=O w, = 1 

it is then clear that the expansion may be w, = s&St’ 
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. . . . 

We now expand the nonsimilar solution for 
K, as follows: 

m?, 43 = 
cu k (8 c. -$q”. (16) 

lt=0 

By equations (12) and (16), we obtain 

, =1 
fag= 2 B,v” 

n=o (17) 
where 

I) 

B,= a,,l c K-m 
m! (n-m)!‘ (18) 

m=O 

Therefore, we have (for a0 = a, = a3 = a4 = 0) : 

B, = 0 

B, = a,& 

B, = a2k; 

B, = *a& 

. . . 

Combining equations (1 l), (14), and (17) we 
obtain 

where 

po = k,(tl) 

Pl =o 

(19) 

P2 = ~~~u2~) 

p3 = $S&z*k; f ss6"a,ko) 

p4 = $t[$a,k; + SSf’a2k’, 

+ (SS’,’ ’ + S2Sf’+)a,kb] 

. . . . 

Substituting equation (19) into equation (9) 
and integrating again. we obtain 

By inversion of the series in equation (13),‘we 
have [l] 

where 

A,= $ 0 
-j 

A, = A, = 0 

A,=&$ 0 
-i 

It follows that 

. . . . 

m 

drj 1 -=- 
dz 3r 

(22) 

Equation (21) may be written as: 

where 
A 

C(1) = m m m+l 

and 

rf 
(T= - . 

0 S 

(2la) 

We obtain then 
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It follows that 

$, PntV = 2 lrn(cw3 
m=O 

where 

we have defined here 

1 1=0 

Cl (0) = 1 0 1 # 0. 

From equation (24), we obtain 

I, = PO = k,(5) 

1, = plcy’ = 0 

I, = p& + p&’ + p&,3’ = 4Stk; 

. . * . 

Combining equations (7) and (25), we obtain 

(23) ko + 3 “go (S)- (“+ 1)‘3m,, 

xiewrr f(n+ 1f/31-Qjz = 0 (27) 
0 

(241 whence we have 

k, + + nzo(S)-c’ ‘)I3 m, lYf-(n + 1)/3] = 0. (28) 

To improve the convergence of the above series, 
Euler transformation may be applied. For this 
purpose, we introduce a parameter E as follows : 

z = T1E3. (29) 

Thus equation (27) can be rewritten as 

Combining equations (20), (22), and (23) we Let 
obtain 

& = +((s)-‘“” I)/3 
4 Wf + U/31 

then equation (30) becomes 

k, $ + f. (S)-(“+ l)j3 

x m,( Te- c1E3 r:“-2”3&,) $‘+I = 0. (30) 

Now ’ 

lim {i eWrte3 $:-21f3 dz,) = lY[(n + 1)/3]. 

Kl(tl, 5) - k, = sfo;CS)-(“+1)~3q, 

x6 
’ b+ f)/31- 1 e-’ & 

where 

m, = 2 &,,A,_,. 
m=o 

Thus we have -i where 

m, = loA, -t l,A, = 0 

m2 = &,A, + l,A, + 12A, = 6S<kb 

m3 = loA + l,A2 + &A1 + &A0 

(25) 

e+1 0 

By Euler transformation, we have 

(26) 

R 

b, = 
c 

t3! 

l!(n - I)! g1, 
1=0 

(31) 

(32) 

(33) 

(34) 

Combining equations (32) and (33) we obtain 
fore-+ 1 

k,+a~o($Yi’bn=O (3% 
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where 

-a 
+ 2<k;, 

Substitution of these results into equation (35) 
yields 

+ . *. .= 0. 

From equation (g), we have 

k,(5) = - (~(0 [I - ko(Of. 

Therefore, 

(36) 

(37) 

k; = - ~‘(1 - k,) + cpkb. (38) 

The prescribed surface catalycity is assumed in 
the following form : 

cp = ma (39) 

then 

These equations may be combined with equation 
(36) to yield 

(41) 

where 

Determination of k,(O, 0, i.e. k,(r) can be 
carried out by the solution of equation (41). 

Equation (41) is a linear equation for k,. It 
can be integrated by the usual procedure. 
However, we shall follow a new scheme wherein 
a simple method of truncation is used. Thus, 
equation (41) can be written as 

dko + t,bk, = x 
dq 

where 

By differentiation of equation (44), we have 

d2ko 

w+ 

Equations (44) and (47) contain three unknowns, 
ko, dk,/dq, and d2k,/dq2. Again, equation (47) 
may be differentiated, the resulting equation can 
be added to the system of equations (44) and (47) 
which then becomes a system of three equations 
with four unknowns. 

This operation may continue indefinitely, 
unless we truncate the operation at some stage 
and assume the higher derivatives become neg- 
ligible. In the present calculation, we assume 
d2ko/d$ is negligible and equation (47) then 
becomes 

$ko+tj$=$. (47a) 

Solving the system of equations (44) and (47a). 
we have 
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(48) 

(49) 

Combining equations (45), (46), and (49) we 
obtain 

1 

k” - 1 + B9 
-- B9 

E 
BY9 

- (1 + B9)’ + Y + 9(1 + B9) dyld9 1 ’ (50) 
Equation (50) is therefore the approximate 
solution of the present problem. In our numerical 
examples, we shall deal with the surface atomic 
mass fraction defined as 

1 
-1 z, = I - ko = 1 + p9 

’ 
BY9 ~ .(51) 

‘+ (1 -I- P~o)~ + Y + 9(I + P9) dyld9 1 
NUMERICAL RESULTS 

Figure 1 shows the variation of atom concen- 
tration along a flat plate taking 9. = 05. Results 
of 6 different solutions are shown on the graph 
contrasting the relative accuracies. It may be 
seen that the solution utilizing the assumption 
of local similarity is at variance with the other 
data. One would therefore deduce that such an 
assumption is not valid in this problem, as was 
anticipated. The other approximate solutions 
are shown, the first being an integral method by 
Chung and Anderson [4]. This method appears 
to be fairly complicated and involves numerical 
integration of a first order differential equation 
for the wall mass fraction. It also requires that 
the pressure gradient term in the momentum 
equation is neglected. For the case considered, 
the results from this method are almost identical 
with those of the present analysis. 

The solution by G. Inger [2] represents a 
series solution of the diffusion equation similar 
to that of the present analysis, the series being 
expressed as a power series in the streamwise 
coordinate. Here it appears that a very large 
number of terms in the series must be taken, and 
for 10 terms the solution still diverges at very 
modest values of the streamwise coordinate. 

I,0 

0 Present DnOlYsis 

0 ,0.2 0.4 0.6 0.8 I .o 
4” : rj =Dahmkoh!w numkr = 8;Xx 

FIG. 1. Variation of atom fraction along a flat plate. 

Taking 15 terms in the series, the results showed 
no divergence in the range indicated, but no 
doubt still diverge outside this range. However. 
within the limits of convergence the results are 
very close to the present analysis. 

An exact solution by Chambrt and Acrivos 
[3] was also available for this particular situ- 
ation, and agrees very closely with the present 
results. 

Figure 2 again represents results for flow 
along a flat plate, but for this case A = 1.0. It 
can be seen that the local similarity solution 
shows greater deviation from the other solutions 
than in the previous case. Results from the 
present analysis agree very closely with those 
from the Lighthill-Volterra method [5], but 
differ slightly at high values of 9 from the results 
of Inger which diverge considerably in this 
region. 
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0 Present onolyrir 
0 Similar solutmn 
0 Lighthill-Vollerra method [5] 
mApprox. series solution (IOlcrmr)~ 
0 Approx. serrcs solution (15 terms) DJ 

the results remain fairly close, except where only 
10 terms were used in the series. 

Figure 4 shows that the results of Inger and 
those of the present analysis are in reasonably 
good agreement for 1 = 2.0. The local similarity 
solution now shows appreciable deviation from 
these two solutions. 

S=O.72 

A= I.00 

I I I I 
0 0.2 0.4 0.6 0.8 I.0 

t#* : 4 = Dahmkahlrr number = B; Xx 

FIG. 2. Variation of atom fraction along a flat plate. 

Figure 3 shows results for the case when A = 
15. The local similarity solution shows greater 
divergence from the other results. The data from 
the Lighthill-Volterra method [S] is seen to be 
in very good agreement with the present analysis, 
while those of Inger now show discrepancies at 
very small values of cp. However. at large values, 

G 0,6- 

0’ ._ 
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e 0.6- 

P 

E 

E 0.4 - 
,o 
0 

8 

$ 0.2 - 

0 Present ono,ys,s 
l Similar solution 
0 Lnghlhill-Vollerro method [5] 
m Approx. seres solui~on (IOterms) E’J 
0 Appror. series solution t I5 terms) [a 

I I I I I 
0 0.2 0.4 0.6 06 I.0 

4- : + = Dahmkohler’numbar = 8;Xi ; 

FIG. 3. Variation of atom fraction along a flat plate. 
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0 Approx. series solution lkS+erms) [2] 

GJ s=o;12 
A =2.00 

I I I I 
0 0.2 0.4 0.6 0.6 

I$+ : 9 =Oahmkohler number* Bi Xx 

FIG. 4. Variation of atom fraction along a flat plate. 

Figures 5 and 6 show the variation of the atom 
mass fraction along a flat plate for the cases 
k = 1.0 and 1 = 2.0. However, the scales are 
plotted logarithmically so as to display the 
results at high values of cp. It is clear that the 
results of Inger (15 term solution) and the 
present analysis are in close agreement through- 
out the entire range, and both tend toward the 
local similarity solution. 

It is of interest to note that in deriving 
equation (50) we made the assumption that the 
terms involving d2ko/d# were negligible. The 
results would indicate that this is reasonably 
true in the cases taken. Although d2k,/dt2 
becomes quite large for small values of 2, the 
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0 Present onalysls 
0 Similar solution 
0 Appror. series solution (I5 
A Extrowbtcd solution D] 

I I.0 
L 

+" : I$ =Dohmkohlrr number = BiA” 

FIG. 5. Variation of atom fraction along a flat plate. 

term d’k,,/dq? remains small and may be neg- 
lected. It is therefore assumed that expressing 
the solution as a function of cp, i.e. regarding cp 
as the independent variable, has eliminated 
problems of convergence which may have been 
encountered had we attempted to solve directly 
in terms of the 5 variable. 
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x.2.00 

0 L IfIll 

0.1 I.0 IO.0 
! 

+r t + = Dohmkohlrr number.= &AX’ 

FIG. 6. Variation of atom fraction along a flat plate. 

CONCLUSIONS 

The results have indicated the reliability of 
the present solution at least for the case of 
flat-plate flows. The simplicity of the solution 
both in analysis and final result gives the ap- 
proach a great advantage over more complex 
techniques. The present theory demonstrates the 
application of Meksyn’s method to a boundary- 
layer problem with nonsimilar solution. The 
range of this type of solution is very great, it is 
not necessary to assume that the momentum 
equation conforms to the laws of similarity, nor 
that the three basic equations of momentum, 
energy, and diffusion are independent. It is 
possible to extend the analysis to provide a 
complete solution to the entire problem of the 
nonsimilar boundary-layer equations including 
such features as injection of a foreign gas and 
thermal gradients giving rise to large density 
variations. These developments are being car- 
ried out and the results will be presented in a 
future article. 

In the present formulation, the simplifying 
assumption that the density viscosity ratio X is 
unity has been adopted. In addition, the follow- 
ing features are noted: (a) the application of 
Euler transformation to equation (28) (b) the 
use of the local Dahmkohler number rp(<) 
instead of 5 as the independent variable, and (c) 
the truncation procedure leading to the simple 
result in equation (50). It seems that all these 
features contribute to the simplicity and accur- 
acy of the present method. It should be interest- 
ing to explore the general problem of nonsimilar 
solutions of binary diffusion in boundary layers 
by extending the present approach. 
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R&am&--Gn &end la methode de Meksyn [I] pour la resolution des couches limites laminaires afin de 
traiter un probltie typique de couche limite binaire avec une solution qui n’est pas en similitude. On 
s’occupe ici de la mtthode asymptotique de resolution de l’ecoulement de couche limite laminaire dissocih 
fig& sur une plaque plane avec une catalyticite repartie de facon arbitraire. Une solution analytique est 
obtenue et on l’a compare avec les don&s existantes dues a d’autres chercheurs [2-51. La comparaison 
montre que les rbsultats actuels ont une precision convenable. L’attrait de la mtthode employee reside 

dans la simplicitt de la thtorie. 

ZpsrllUUeBf~ Die Methode von Meksyn [I] zur Liisung laminarer Grenzschichtprobleme wird zur 
Behandlung typischer Probleme bin;irer Grenzschichten mit nichtiihnlichen Liisungen erweitert. Die 
vorliegende Arbeit umfasst die asymptotische Methode der Liisung einer eingefrorenen dissoziierten 
laminaren Grenzschichtstriimung an einer ebenen Platte mit beliebig verteilter Katalysitllt. Eine ges- 
chlossene Ldsung liess sich erhalten und wurde mit Ergebnissen anderer Autoren [2-51 verglichen. Dieser 
Vergleich zeigt, dass die heir angegebenen Resultate angemessene Genauigkeit besitzen. Der Vorteil der 

gezeigten Methode liegt in der Einfachheit der Analysis. 

AaHoTapx-MeTog pacseTa nanraaapaoro norpaBBrBoro CJIOR MeBcaBa (1) o606maeTcB 
na cnysatl BeaBToBo~enbBoro pewems TUUUYH~~~ 3anaw 6aBapBoro norpaBasBor0 CJIOn. 
3Ta CTaTbR IIOCFlRmeHa aCBMnTOTB’leCKOMy MeTORy pt?meHBB 3aMOpO?BeHHOrO ABCCOnBBpO- 
BaHHOrO TeBeHUB B nOrpaHUBHOM CJlOe Ha llOBepXHOCTU lIJlOCKOti NlaCTUHbl C IlpOU3BOJlbHO 

paCnpeRWIeHHOft KaTaJIUTWiHOCTbH). PelueHUe nOJIyWH0 B 3aMHHyTOfi @OpMe, U p33J'JIbTaTbI 

CpaBHUBaIOTCH C AaHHbZMU Bpyrux UCCJE~OBaTeJRft (2-5). CpaBHeHUe nOKa3aJlO J'AOBJETBO- 

pUTt'JlbHJ'I0 TO'lHOCTb pe3yJIbTaTOB. HpeBMym‘XTBO AaHHOrd MeTOAa COCTOUT B er0 npOCT0Te. 


