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ASYMPTOTIC METHOD OF SOLUTION OF THE FROZEN
DISSOCIATED LAMINAR BOUNDARY-LAYER FLOW
OVER A FLAT-PLATE SURFACE WITH ARBITRARILY

DISTRIBUTED CATALYCITY*
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Abstract—Meksyn’s method [1] of solution of laminar boundary layers is extended to deal with a
typical problem of a binary boundary layer with nonsimilar solution. The present paper deals with the
asymptotic method of solution of the frozen dissociated laminar boundary-layer flow over a flat-plate
surface with arbitrarily distributed catalycity. A closed form solution is obtained and has been compared
with existing data due to other investigators [2-5]. Results of the comparison show that the present results
are of adequate accuracy. The attractiveness of the present method is in the simplicity of the analysis.

NOMENCLATURE

coefficients defined by equation (21);
coefficients defined by equation (12);
constant in equation (39);
coefficients defined by equation (21a};
Blasius function;

molecular mass function;
coefficients defined by equation (16);
Schmidt number (= p/pD,,);
velocities in x- and y-direction;
boundary-layer coordinates;

surface atom mass function,

Greek symbols

B,
¥

&,
T1s
T,
&
P

defined by equation (43);

defined by equation (42);

dummy variable in equation (29);
defined by equation (29);
variable defined by equation (10);
transformed coordinates;
density;
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i, viscosity ;
A, exponent in catalycity variation fun-
tion;
7 density viscosity ratio (= pu/p.i.);
o, Dahmkohler number ;
o. function defined by equation (11);
o, variable defined by equation (21a);
v, defined by equation (45);
1 defined by equation (46).
Subscripts
1, refers to molecular species;
2, refers to atomic species;
e, evaluated in free-stream conditions;
0, evaluated for n =y =0, ie. at the

surface.

INTRODUCTION

THE AsYMPTOTIC method of solution of laminar
boundary layers, first used by Meksyn [1], has
been applied to the study of the boundary-layer
diffusion equation in the presence of a body
surface with first order atom recombination rate
distributed in an arbitrary continuous manner.
In the present paper, we deal with the cas¢ of a
frozen dissociated laminar boundary-layer flow
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over a flat-plate surface with arbitrarily distri-
buted catalycity, constancy of viscosity-density
product being assumed. When the nondimen-
sional Dahmkohler number varies as a single
power of the distance [see equation (39)], we
obtain the surface atomic mass fraction on the
flat plate in a closed form solution [see equation
(51)]. Our approximate results are compared
with the ‘“‘exact” solution by Inger [2] and
Chambré-Acrivos [3]; the solution by integral
method by Chung-Anderson [4]; and the solu-
tion by Lighthill’s technique due to Chung-
Liu—Mirels [ 5]*. It will be seen that the asympto-
tic method of solution presented herein provides
adequate accuracy. The attractiveness of the
present method is mainly in the simplicity of the
approach. Previously, the present authors have
extended Meksyn’s method to obtain some
similar solutions of binary boundary layers [6]
in connection with the transpiration cooling
problem, and had reasonably encouraging re-
sults. The present study suggests that the
extended Meksyn’s method for the treatment of
nonsimilar solutions of the binary boundary-
layer equations deserves further attention. A
general formulation of this latter problem will be
presented elsewhere.

ANALYSIS

Consider the laminar boundary-layer flow of
a dissociated binary gas mixture over a flat plate.
Let there be an arbitrarily prescribed surface
catalycity. We assume that the mixture of
molecules and atoms is chemically frozen in the
boundary layer. We further assume that the
function representing the velocity profile is self-
similar and independent of the energy and
diffusion equations. In other words, the velocity
profile is expressible as follows:

L= fim) (1)
ue

* Some of these results were compared with the results
obtained by the method of Mellin transform by Simpkins
and Freeman {7, 8].
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where #n is the similarity variable defined as
follows:

Gy
and ¢ is defined as
& = [ bttt dx. 3
The differential equation for f'is
(AfY +ff"=0 4
with the boundary conditions:
JO =70 =0 f(wo) =1 (5)

In equation (4), 1= pu/p.u,. We shall take
Z=1, and f is then the Blasius function. In
order to determine the surface atom recombi-
nation rate resulting from the prescribed surface
catalycity, we must consider the nonsimilar
solution of the diffusion equation:

sk =2 T e
¢
The boundary conditions are:

0K

T 08 = -0 [1 - Ki(0,9] ®)

In these equations K,(£, ) denotes the mass
fraction of the molecular species. Equation (8)
is the relation between the diffusion of species
at the surface and the surface recombination
rate. (&) is termed the Dahmkoler number and
represents the ratio of atom diffusion time to
surface recombination time. It is a prescribed
function of &£. The present objective is to deter-
mine K (0, &).
Integrating equation (6), we have
aaﬁ =e P& n 9)
n

where

t=Sffdr1 (10)
0
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S has been taken to be constant. The velocity
profile is expressible as

a'l
f= E =
n:
n=0

where a, = a, = a; =a, =0 and a, are in-
dependent of £ From equation (10), we have

a’l
’_SZ(nH'

o n) = —— (0 )+

(12)

n+1

K (13)
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written in the form:
o= (Snr Y SOy
=0
where

1
SM= Y Ss»spb. (13b)

m=0
Consequently each coefficient may be ex-
pressed in terms of.“lower order” coefficients,
and eventually in terms of S and S{" which
are the basic coefficients in the series 7. Thus,
we may write:

@° = (Sn)° Z S =1

= (Sn)' Z Sy

(r)!

= (Sn? 3, s

(@) = (Sn) Z Sin'

1 n=0
(0) _
S 0 n#0

(1) _ __
" (n+ 1Y

n
2y _ 1ol
SP =Y Ss2,
m=0

S = Zl: SHgE- 1),

For further work it will be necessary to
expand the function " as a series of the variable

n.
Consider

k=0

If we now define S to be the coefficient of #'
in the expansion of the function

{i - n
(k+1)'"
k=

it is then clear that the expansion may be

Then, we have

n!

n=0

W'

n=0

(14)

where, utilizing the result (13b),

1
W, = E Sy s, —
pl

p=0

From equation (15), we obtain
Wo = 1
W, =SSP

(13)
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W, = S S + bs2s)

1
W3 = Ss(zl) + %st(lz) + 37335%3)

We now expand the nonsimilar solution for
K, as follows:

'k
Ko=)y y

(16)
n=0
By equations (12) and (16), we obtain
6K 1
2_: Bur' (17
where
n k}
am+1 n—m
= . 18
B, Zm! (n—m! (18)
m=0Q
Therefore, we have (fora, = a; = a3 = a4 = 0):
BO = O
= akg
B, = a)k
By = %azki

Combining equations (11), (14), and (17) we
obtain

e = 3 pa” (19)
where
Po = ky(&)
py=0 A
P2 = Slarky)

ps = 3S&aky + SSVaykp)

Pa = %Si[%azkrz + SS(I)azk’
(S 4 S25P)a,ky ]
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Substituting equation (19) into equation (9)
and integrating again, we obtain

Ki(n.8) — kol&) = ja( Y pan™ e dn.
0 m=0 (20}
By inversion of the series in equation (13), we
have [1]
2 Am T 4(m+1)
ﬂ”Zm_*_l(‘S”) 2h
m=0
where
-4
5]
Ay ==
-(3)
A =A4,=0
-+
a
Az = &=
3 15(6)
It follows that
dg 1 9 T\ ¥m+ 1
e Ad= 22
dr 3z '"(S> 22)
m=0
Equation (21) may be written as:
n=0Y Vo
m=0
where
o = An_
" o m+1
and {(21a)

.1: %.
o=[{=1.
S
We obtain then
2 = Z betl) |

o0
=02y Do
-

C(B} — Z C(E)C(Z}

o0
,117 = g? Z Cff)crm
m=0

m

) — 0 p—1
af =Y oz,
i=o
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It follows that

L P = Y, Llw/S"™ (23)
where
bn= Y pci, (24)
=0
we have defined here
1 =0
A =
0 1#0.

From equation (24}, we obtain
Iy =po = ki($)

I =picg’ =0

1) 2 ’ a -
I, = pict) + poc® = S&askp) 3
Iy = pic) + ppc® + pack? = 4SEk;

Combining equations (20), (22), and (23) we
obtain

Ki(.8) — ko= ) 3(S)""*1m,

n=0

x f[{n-ﬁ— 1M3}~-1 e * d‘l’ (25)
0

where
(26)
Thus we have

a,\ ¥
mo = IQAG = kl(_ﬁz)

my = IOAI + llAO =0
my = loA2 + llAl + IZAO = 6S€klo
m3 = loA3 -+ IIAZ + l2A1 -+ lng

_ ky YA
= (E + 4Scfk1)(-g)

Combining equations (7) and (25), we obtain
ko +4 Y ()73,
n=0

o)
x [e"tglt+ B dr = 0
o

(27
whence we have

ko + %,.20(8)-("“)/3 m,T[(n + 1)/3] =0. (28)

To improve the convergence of the above series,
Euler transformation may be applied. For this
purpose, we introduce a parameter ¢ as follows:

T = 1,8 (29)
Thus equation (27) can be rewritten as
Ko+ 3 3, ()0
n=0
X m"{ j‘e—nsl ‘!(1"_2)/3(1'51} 8n+1 = Q. (30}
4]

Now - :
lim {f e ¢~ 23 dr,} = T[(n + /3]
0

£ —+1
Let
gn = ¥HS) "3 m, T[(n + 1)3]  (31)
then equation (30) becomes
ko + Y gttt =0. (32)
n=0

By Euler transformation, we have

zg et Z b (__e__)”“ (33)
" "\l +¢
n=0 n=0

where

n

n!
b= Z N — 1o

1=0

(34)

Combining equations (32) and (33) we obtain
fore — 1

ko + ZO @rttb, =0 (35)
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where

a, S\ *
bo—ge—zr(i)k<z

+
by =go + g, =3T@)k (2)

-+

Q

S
b=go+29, +9,= %I’(—%)k,(% + 2¢ky
by = go + 391 + 39, + g3

— 1Tk, ("’S) 1 62K,

+4r®) S“(a-?—) (lfé + 4SEK, )

Substitution of these results into equation (35)
yields

ko + 5T ("25)~ 3k,
T S" (“gs) ("1 + 4s¢k)
+....=0 (36)
From equation (8), we have
k(&) = — @& [1 — kol&)] 37
Therefore,
ki = — @'(1 — ko) + okg. (38)

The prescribed surface catalycity is assumed in
the following form:

¢ =B (39)
then
lo' = Ap
, dk, (40)

These equations may be combined with equation
(36) to yield
dk 1
‘—0 + (““’* + - ko = E
Ye v ?

do (41)
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where

-4
y = [% + 5T (“—25) qo]z 42)

S\ Lo 1
B = e [T G) + 5GEIT3)S
+ T34

Determination of k,(0, &), ie. ky(&) can be
carried out by the solution of equation (41).

Equation (41} is a linear equation for k,. It
can be integrated by the usual procedure.
However, we shall follow a new scheme wherein
a simpie method of truncation is used. Thus,
equation (41) can be written as

dk
—2 4 Yo = 1 (44)
do
where
1
¥ ;q—,( Be (
B
ré v {46)

By differentiation of equation {44), we have

d’k, d\// dk0 dy
g2 + — o lﬁ = do @7
Equations (44) and (47) contain three unknowns,
ko, dko/de, and d%k,/de?. Again, equation (47)
may be differentiated, the resulting equation can
be added to the system of equations (44) and (47)
which then becomes a system of three equations
with four unknowns.

This operation may continue indefinitely,
unless we truncate the operation at some stage
and assume the higher derivatives become neg-
ligible. In the present calculation, we assume
d%k,/de? is negligible and equation (47) then
becomes

d dk, d
'/’ w__o__x.

dfp de

Solving the system of equations (44) and (47a).
we have

(47a)
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d _xdy
dko, do Yy do
w_———-«—l% (48)
¥ do
d _xdv
_x_1ljde ydo
ko—lp " “idy (49)
Y de

Combining equations (45), (46), and (49) we
obtain

1
o= T3 g | 2
Bre

- . (50
(1 + Boy + v + o(1 + Bo) dv/drp] G0

Equation (50) is therefore the approximate
solution of the present problem. In our numerical
examples, we shall deal with the surface atomic
mass fraction defined as
1
Zo=1—-ky=+——
0 (1] 1 + B (P
Byo
x| 1+ (51)
[ (1 + Bo)® + v + o(1 + Bo) dy/de

NUMERICAL RESULTS

Figure 1 shows the variation of atom concen-
tration along a flat plate taking 2 = 0-5. Results
of 6 different solutions are shown on the graph
contrasting the relative accuracies. It may be
seen that the solution utilizing the assumption
of local similarity is at variance with the other
data. One would therefore deduce that such an
assumption is not valid in this problem, as was
anticipated. The other approximate solutions
are shown, the first being an integral method by
Chung and Anderson [4]. This method appears
to be fairly complicated and involves numerical
integration of a first order differential equation
for the wall mass fraction. It also requires that
the pressure gradient term in the momentum
equation is neglected. For the case considered,
the results from this method are almost identical
with those of the present analysis.

i

The solution by G. Inger [2] represents a
series solution of the diffusion equation similar
to that of the present analysis, the series being
expressed as a power series in the streamwise
coordinate. Here it appears that a very large
number of terms in the series must be taken, and
for 10 terms the solution still diverges at very
modest values of the streamwise coordinate.

-0

© Presant analysis

® Similar solution

¥ Approx. integrai method 4

O Exact numaricat sotution [3}

W Aporox. saries solution {10 terms) [2
) Approx. series solution {5 terms)

08

Zo

06

Surface atom mass fraction,

Q-4
\.\)
02
§=20-72
A=0-50
] i ] i
0 0-2 04 06 0-8 1-0

L
¢ : ¢ =Dahmkohler number = &, x>

FiG. 1. Variation of atom fraction along a flat plate.

Taking 15 terms in the series, the results showed
no divergence in the range indicated, but no
doubt still diverge outside this range. However,
within the limits of convergence the results are
very close to the present analysis.

An exact solution by Chambré and Acrivos
[3] was also available for this particular situ-
ation, and agrees very closely with the present
results.

Figure 2 again represents results for flow
along a flat plate, but for this case A = 1-0. It
can be seen that the local similarity solution
shows greater deviation from the other solutions
than in the previous case. Results from the
present analysis agree very closely with those
from the Lighthill-Volterra method [5]. but
differ slightly at high values of ¢ from the results
of Inger which diverge considerably in this
region.
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O Present analysis

@ Similar solution

© Lighthill-Volterra method (5]

B Approx. series solution (IO terms)
O Approx. series solution (15 terms)

\\:%\o/ '
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T
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\
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4;* : ¢ =Dahmkohler number = 8] x*

FIG. 2. Variation of atom fraction along a flat plate.

Figure 3 shows results for the case when 4 =
1-5. The local similarity solution shows greater
divergence from the other results. The data from
the Lighthill-Volterra method [5] is seen to be
in very good agreement with the present analysis,
while those of Inger now show discrepancies at
very small values of ¢. However, at large values,

M
08— ®,
N
c
2
8 o6
<
4
w
-]
E
s 0-4
s O Present anolysis
® Similar solution
3 © Lighthill-Volterra method (5] *
'—S 1 Approx. series solution (10terms) (2]
u:), 02— OApprox. series solution (15 terms) [2]
$=072
A=1-50
| I J ]
[} , 02 0-4 06 o8 10

@X : ¢ = Dahmkohler  number = 54 x

FIG. 3. Variation of atom fraction along a flat plate.

the results remain fairly close, except where only
10 terms were used in the series.

Figure 4 shows that the results of Inger and
those of the present analysis are in reasonably
good agreement for A = 2-0. The local similarity
solution now shows appreciable deviation from
these two solutions.

10
tt :.\
o -
N 08 \
s
=
g 06—
w
w
o
£
g oaf-
o O Present analysis
] @ Similar solution \.
s 1 Approx. series solution {10 terms) [2]
5 13 Approx. series solution (15 terms) [2]
5 o2+
(7 §=072
A =2:00
] ] | |
0] 02 0-4 06 0-8 [Re]

L
$% : ¢ =Dahmkohler number= 54 x*

F1G. 4. Vanation of atom fraction along a flat plate.

Figures 5 and 6 show the variation of the atom
mass fraction along a flat plate for the cases
A =10 and 1 = 2:0. However, the scales are
plotted logarithmically so as to display the
results at high values of ¢. It is clear that the
results of Inger (15 term solution) and the
present analysis are in close agreement through-
out the entire range, and both tend toward the
local similarity solution.

It is of interest to note that in deriving
equation (50) we made the assumption that the
terms involving d%k,/de? were negligible. The
results would indicate that this is reasonably
true in the cases taken. Although d%k,/d&?
becomes quite large for small values of A, the
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Q Present analysis

® Similor solution

O Approx. series soiution {15 terms) 2]
A Extropoloted solution [2]

Z

Surface atom mass fraction,
°
H
I

A
L1

1
9 76-0

Loyl ) i
1-0

¢X : ¢ =Dahmkohler number = 84 x>

F1G. 5. Variation of atom fraction along a flat plate.

term d2k,/de? remains small and may be neg-
lected. It is therefore assumed that expressing
the solution as a function of ¢, i.e. regarding ¢
as the independent variable, has eliminated
problems of convergence which may have been
encountered had we attempted to solve directly
in terms of the £ variable.

-0,
%
A\ O Present analysis
@ Similar solution
o 08l O Approx. series solution (15 terms)[2]
' A Extrapolated solution [2]
=" i
2
o
w
g L ]
€
S 0-4|—
=] 52072
8 . X’Z‘OO
2
@ oz
0 n i ;\1‘\11111
01 [Y¢) 10-0

i
@X t ¢ = Dahmkohler numbers 8% X

Fi1G. 6. Variation of atom fraction along a flat plate.
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CONCLUSIONS

The results have indicated the reliability of
the present solution at least for the case of
flat-plate flows. The simplicity of the solution
both in analysis and final result gives the ap-
proach a great advantage over more complex
techniques. The present theory demonstrates the
application of Meksyn’s method to a boundary-
layer problem with nonsimilar solution. The
range of this type of solution is very great, it is
not necessary to assume that the momentum
equation conforms to the laws of similarity, nor
that the three basic equations of momentum,
energy, and diffusion are independent. It is
possible to extend the analysis to provide a
complete solution to the entire problem of the
nonsimilar boundary-layer equations including
such features as injection of a foreign gas and
thermal gradients giving rise to large density
variations. These developments are being car-
ried out and the results will be presented in a
future article.

In the present formulation, the simplifying
assumption that the density viscosity ratio ] is
unity has been adopted. In addition, the follow-
ing features are noted: (a) the application of
Euler transformation to equation (28), (b) the
use of the local Dahmkohler number ¢(¢)
instead of £ as the independent variable, and (c)
the truncation procedure leading to the simple
result in equation (50). It seems that all these
features contribute to the simplicity and accur-
acy of the present method. It should be interest-
ing to explore the general problem of nonsimilar
solutions of binary diffusion in boundary layers
by extending the present approach.

REFERENCES

1. D. MexsYN, New Methods in Laminar Boundary Layer
Theory. Pergamon Press, Oxford (1961).

2. G. R. INGER, Dissociated laminar boundary-layer flows
over surfaces with arbitrary distributions of catalycity,
Int. J. Heat Mass Transfer 6, 815-822 (1963).

3. P. L. CHaMBRE and A. AcRrivos, On chemical surface
reactions in laminar boundary-layer flows, J. Appl. Phys.
27 (11), 1323-1328 (November 1956).



266

4. P. M. CHUNG and A. D. ANDERSON, Heat Transfer to

Surfaces of Finite Catalytic Activity in Frozen Dissoci-
ated Hypersonic Flow, NASA TN D-350 (January 1961).

. P. M. CHUNG, S. W. Lwv and H. MireLs, Effects of
discontinuity of surface catalycity on boundary-layer
flow of dissociated gas, Int. J. Heat Mass Transfer 6,
193-210 (1963).

. T. Y. Li and P. S. Kirg, An approximate analytical
derivation of skin friction and heat transfer in laminar

T. Y. LT and P. S. KIRK

binary boundary-layer flow, Int. J. Heat Mass Transfer
8, 1217-1234 (1965).

. P. G. SiMpkins, On the diffusion of species in similar

boundary layers with continuously varying properties,
Int. J. Heat Mass Transfer 8, 99-110 (1965).

. N. C. FreemaN, The diffusion of species in frozen

hypersonic boundary layers, in Fundamental Phenomena
in Hypersonic Flow, pp. 133-153. Cornell University

Press (1966).

Résumé—On étend la méthode de Meksyn [1] pour la résolution des couches limites laminaires afin de

traiter un probléme typique de couche limite binaire avec une solution qui n’est pas en similitude. On

s’occupe ici de la méthode asymptotique de résolution de I'écoulement de couche limite laminaire dissociée

figée sur une plaque plane avec une catalyticité répartie de fagon arbitraire. Une solution analytique est

obtenue et on 1’a comparé avec les données existantes dues & d’autres chercheurs [2-5]. La comparaison

montre que les résultats actuels ont une précision convenable. L’attrait de la méthode employée réside
dans la simplicité de la théorie.

Zusammenfassung—Die Methode von Meksyn [1] zur Losung laminarer Grenzschichtprobleme wird zur

Behandlung typischer Probleme bindrer Grenzschichten mit nichtdhnlichen Lésungen erweitert. Die

vorliegende Arbeit umfasst die asymptotische Methode der Losung einer eingefrorenen dissoziierten

Jaminaren Grenzschichtstrémung an einer ebenen Platte mit beliebig verteilter Katalysitiit. Eine ges-

chlossene Lésung liess sich erhalten und wurde mit Ergebnissen anderer Autoren [2-5] verglichen. Dieser

Vergleich zeigt, dass die heir angegebenen Resultate angemessene Genauigkeit besitzen. Der Vorteil der
gezeigten Methode liegt in der Einfachheit der Analysis.

Annoranua—Meroy; pacyeTa JAMHHAPHOTO NOrpaHM4HOro cmos Mexcuna (1) oBobuiaerca
HA CIyyali HeABTOMOAEGJNBHOTO PEIIeHUA TUNUYHON 3ajauM OMHAPHOrO IOrPaHUYHOrO CIOHA.
9r1a cTaThA NOCBAIIEHA ACHMIITOTHYECKOMY METOXY PelieHHA 3aMOPOKEHHOre MUCCOLMMpO-
BAHHOTO TeYEHNA B NMOFPAHHUHOM CJIO€ HA MOBEPXHOCTH IJIOCKOH IUIACTHHH C [IPOH3BOJILHO
pacnpefeseHHON KaTaAMTUYHOCThIO. Pelllenne mogyYeHo B 3aMKHYTOH opme, 1 pesyiabTaThH
CPaBHHMBAIOTCA C JAHHHMH ApYrux ucciegosareneli (2-5). CpaBHeHue MoKasasio yAOBIETBO-
PUTEIBHYI0 TOYHOCTE Pe3yabTaToB. IIpenMymnIecTBO TaKHOT'O METOAA COCTOMT B €ro IPOCTOTe.



